simple-math ~master
Includes functions for solving equations and tasks using formulas from a school mathematics course.
To use this package, run the following command in your project's root directory:
Manual usage
Put the following dependency into your project's dependences section:
simple-math library
A library that includes functions for solving equations and tasks using formulas from a school mathematics course.
Installition
- Using DUB in console:
dub add simple_math
- Using
dub.json
:
"dependecies": {
"simple-math": "~>1.1.0"
}
- Using
dub.sdl
:
dependency "simple-math" version="~>1.1.0"
Tools
Module progressions
Arithmetical
public T findArithmeticalD(T)(T[] progression)
\ Finds the difference of the arithmetic progression in an array consisting of numbers.public bool isArithmeticProgression(T)(T[] array)
\ Checks whether the passed array is an arithmetic progression.public T findAN(T)(T[] progression, T n)
public T findAN(T)(T a1, T d, T n)
\ Finds a member of the arithmetic progression at position N.public T findArithmeticSN(T)(T[] progression, T n)
public T findArithmeticSN(T)(T a1, T d, T n)
\ Finds the sum of N members of the arithmetic progression.
Example
// findArithmeticalD:
assert(findArithmeticalD!ubyte([2, 3, 4, 5]) == 1);
assert(findArithmeticalD!byte([5, 2]) == -3);
// isArithmeticProgression:
assert(isArithmeticProgression!ubyte([3, 2, 1]));
assert(!isArithmeticProgression!ubyte([1, 5, 25]));
// findAN(T)(T[] progression, T n):
assert(findAN!ubyte([2, 3], 3) == 4);
assert(findAN!float([5, 1, -3], 6) == -15.0);
// findAN(T)(T a1, T d, T n):
assert(findAN!ubyte(2, 1, 3) == 4);
assert(findAN!float(5, -4, 6) == -15.0);
// findArithmeticSN(T)(T[] progression, T n):
assert(findArithmeticSN!ubyte([1, 2, 3], 5) == 15);
assert(findArithmeticSN!byte([1, -2], 4) == -12);
// findArithmeticSN(T)(T a1, T d, T n):
assert(findArithmeticSN!ubyte(1, 1, 5) == 15);
assert(findArithmeticSN!byte(1, -3, 4) == -12);
Geometrical
public T findGeometricQ(T)(T[] progression)
\ Finds the difference of the geometric progression in an array consisting of numbers.public bool isGeometricProgression(T)(T[] array)
\ Checks whether the passed array is an geometric progression.public bool isSequence(T)(T[] progression)
\ Checks whether the array is a sequence (q = 1, [1, 1, 1, ...]).public T findBN(T)(T[] progression, T n)
public T findBN(T)(T b1, T q, T n)
\ Finds a member of the geometric progression at position N.public T findGeometricSN(T)(T[] progression, T n)
public T findGeometricSN(T)(T b1, T q, T n)
\ Finds the sum of N members of the geometric progression.
Example
// findGeometricQ:
assert(findGeometricQ!ubyte([25, 50, 100]) == 2);
assert(findGeometricQ!byte([-2, -6, -18]) == 3);
// isGeometricProgression:
assert(isGeometricProgression!ubyte([1, 4, 16]));
assert(!isGeometricProgression!ubyte([8, 10, 16]));
// isSequence:
assert(isSequence([2, 2]));
assert(!isSequence([1, 2]));
// findBN(T)(T[] progression, T n):
assert(findBN!byte([-2, -6], 3) == -18);
assert(findBN!float([100, 50, 25], 4) == 12.5);
// findBN(T)(T b1, T q, T n):
assert(findBN!byte(-2, 3, 3) == -18);
assert(findBN!float(100, 0.5, 4) == 12.5);
// findGeometricSN(T)(T[] progression, T n):
assert(findGeometricSN!ubyte([1, 2], 3) == 7);
assert(findGeometricSN!float([100, 25], 3) == 131.25);
// findGeometricSN(T)(T b1, T q, T n):
assert(findGeometricSN!ubyte(1, 2, 3) == 7);
assert(findGeometricSN!float(100, 0.25, 3) == 131.25);
Module chances
public T chance(T)(T value, T from)
\ Finds the chance ofvalue
shares falling out offrom
.
Example
assert(chance!byte(5, 25) == 20);
assert(chance!byte(19, 20) == 95);
Module percents
public T percents(T)(real value, real from)
\ Finds the percentage ofvalue
fromfrom
parameter.public T[] percentsCaptures(T)(T[] captures, T from)
\ Finds the percentage for each element in the array relative to thefrom
parameter.
Example
// percents:
assert(percents!ubyte(5, 10) == 50);
assert(percents!float(2.5, 10) == 25.0);
// percentsCaptures:
float[] percentsOfTen = percentsCaptures!float([2.5, 7.5], 10);
float[] expectedResults = [25.0, 75.0];
foreach (ubyte i; 0 .. 2)
assert(percentsOfTen[i] == expectedResults[i]);
Module square_equations
public T findDesc(T)(T a, T b, T c)
\ Finds the discriminant of the square equation based on the coefficientsa
,b
and `c'.public T[] resolveFull(T)(T a, T b, T c)
\ Finds the roots of the full square equation and, if there are none, throws an error.public T[] resolveAB(T)(T a, T b)
\ Finds the roots of an incomplete square equation (a
,b
).
Example
// findDesc:
assert(findDesc!byte(-1, 4, -3) == 4);
assert(findDesc!byte(1, -1, 0) == 1);
// resolveFull:
int[] result = resolveFull!int(-1, 4, -3);
int[] expectedResults = [1, 3];
foreach (ubyte i; 0 .. 2)
assert(result[i] == expectedResults[i]);
// resolveAB:
int[] result = resolveAB!int(1, -1);
int[] expectedResults = [1, 0];
foreach (ubyte i; 0 .. 2)
assert(result[i] == expectedResults[i]);
Module trigonometry
public double sine(T)(T angleMeasure)
\ Finds the sine of the angle by its degree measure.public double cosine(T)(T angleMeasure)
\ Finds the cosine of the angle by its degree measure.public double tangents(T)(T angleMeasure)
\ Finds the tangents of the angle by its degree measure.public double cotangents(T)(T angleMeasure)
\ Finds the cotangents of the angle by its degree measure.
Example
assert(sine(30) == 0.5);
assert(cosine(60) == 0.5);
assert(tangents(45) == 1);
assert(cotangents(45) == 1);
Feedback
Open issues and pull requests if it's mandatory. Thanks for reading and downloading.
- ~master released 2 years ago
- DarkJoij/simple-math
- Apache-2.0
- Copyright 2022 Dallas
- Authors:
- Dependencies:
- none
- Versions:
-
1.1.0 2022-Nov-21 1.0.0 2022-Aug-25 ~master 2022-Nov-21 - Download Stats:
-
-
0 downloads today
-
0 downloads this week
-
0 downloads this month
-
36 downloads total
-
- Score:
- 0.4
- Short URL:
- simple-math.dub.pm